Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0300467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593146

RESUMO

Liposome nanoparticles can carry a wide range of therapeutic molecules including small molecules and nucleic acid-based therapeutics. Potential benefits include translocation across physiological barriers, reduced systemic toxicity, and enhanced pharmacokinetic parameters such as absorption, distribution, selective release and optimal elimination kinetics. Liposome nanoparticles can be generated with a wide range of natural and synthetic lipid-based molecules that confer desirable properties depending on the desired therapeutic application Nel et al (2023), Large (2021), Elkhoury (2020). This protocol article seeks to detail the procedures involved in the production of cationic liposomes using thin-film dispersed hydration method with an estimated uniform size of 60-70 nm for targeted drug administration in tumor cells, by modifying the previous one also published by the same authors cited here. The method was carrying out using N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl (DOTAP, 2 mg) as cationic lipid and cholesterol (0.5 mg) in a molar ratio of 7:3 respectively. The liposomal suspension was obtained and its physical, chemical and biological properties were determined. A two-step extrusion process, using 100 nm and 50 nm polycarbonate membranes, was carried. The results demonstrate generation of liposome nanoparticles with a size of 60-70 nm stable for at least 16 weeks and with an encapsulation efficiency of approximately 81% using Doxorubicin.


Assuntos
Nanopartículas , Ácidos Nucleicos , Lipossomos/química , Nanopartículas/química , Doxorrubicina , Lipídeos/química
2.
PLoS One ; 18(2): e0276248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36753513

RESUMO

Three-dimensional (3D) cell culture models can help bridge the gap between in vitro cell cultures and in vivo responses by more accurately simulating the natural in vivo environment, shape, tissue stiffness, stressors, gradients and cellular response while avoiding the costs and ethical concerns associated with animal models. The inclusion of the third dimension in 3D cell culture influences the spatial organization of cell surface receptors that interact with other cells and imposes physical restrictions on cells in compared to Two-dimensional (2D) cell cultures. Spheroids' distinctive cyto-architecture mimics in vivo cellular structure, gene expression, metabolism, proliferation, oxygenation, nutrition absorption, waste excretion, and drug uptake while preserving cell-extracellular matrix (ECM) connections and communication, hence influencing molecular processes and cellular phenotypes. This protocol describes the in vitro generation of tumourspheroids using the low attachment plate, hanging drop plate, and cellusponge natural scaffold based methods. The expected results from these protocols confirmed the ability of all these methods to create uniform tumourspheres.


Assuntos
Glioblastoma , Animais , Glioblastoma/metabolismo , Técnicas de Cultura de Células/métodos , Esferoides Celulares , Matriz Extracelular/metabolismo
3.
Drug Discov Today ; 28(2): 103426, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36332834

RESUMO

This review focuses on recent advances in 3D culture systems that promise more accurate therapeutic models of the glioblastoma multiforme (GBM) tumor microenvironment (TME), such as the unique anatomical, cellular, and molecular features evident in human GBM. The key components of a GBM TME are outlined, including microbiomes, vasculature, extracellular matrix (ECM), infiltrating parenchymal and peripheral immune cells and molecules, and chemical gradients. 3D culture systems are evaluated against 2D culture systems and in vivo animal models. The main 3D culture techniques available are compared, with an emphasis on identifying key gaps in knowledge for the development of suitable platforms to accurately model the intricate components of the GBM TME.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Microambiente Tumoral
4.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364669

RESUMO

Many polymeric gene delivery nano-vectors with hyperbranched structures have been demonstrated to be superior to their linear counterparts. The higher delivery efficacy is commonly attributed to the abundant terminal groups of branched polymers, which play critical roles in cargo entrapment, material-cell interaction, and endosome escape. Hyperbranched poly(ß-amino ester)s (HPAEs) have developed as a class of safe and efficient gene delivery vectors. Although numerous research has been conducted to optimise the HPAE structure for gene delivery, the effect of the secondary amine residue on its backbone monomer, which is considered the non-ideal termination, has never been optimised. In this work, the effect of the non-ideal termination was carefully evaluated. Moreover, a series of HPAEs with only ideal terminations were synthesised by adjusting the backbone synthesis strategy to further explore the merits of hyperbranched structures. The HPAE obtained from modified synthesis methods exhibited more than twice the amounts of the ideal terminal groups compared to the conventional ones, determined by NMR. Their transfection performance enhanced significantly, where the optimal HPAE candidates developed in this study outperformed leading commercial benchmarks for DNA delivery, including Lipofectamine 3000, jetPEI, and jetOPTIMUS.

5.
Comput Struct Biotechnol J ; 19: 6050-6063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34849208

RESUMO

The G-protein coupled receptor, GPR120, has ubiquitous expression and multifaceted roles in modulating metabolic and anti-inflammatory processes. Recent implications of its role in cancer progression have presented GPR120 as an attractive oncogenic drug target. GPR120 gene knockdown in breast cancer studies revealed a role of GPR120-induced chemoresistance in epirubicin and cisplatin-induced DNA damage in tumour cells. Higher expression and activation levels of GPR120 is also reported to promote tumour angiogenesis and cell migration in colorectal cancer. Some agonists targeting GPR120 have been reported, such as TUG891 and Compound39, but to date development of small-molecule inhibitors of GPR120 is limited. Herein, following homology modelling of the receptor a pharmacophore hypothesis was derived from 300 ns all-atomic molecular dynamics (MD) simulations on apo, TUG891-bound and Compound39-bound GPR120S (short isoform) receptor models embedded in a water solvated lipid bilayer system. We performed comparative MD analysis on protein-ligand interactions between the two agonist and apo simulations on the stability of the "ionic lock" - a Class A GPCRs characteristic of receptor activation and inactivation. The detailed analysis predicted that ligand interactions with W277 and N313 are critical to conserve the "ionic-lock" conformation (R136 of Helix 3) and prevent GPR120S receptor activation. The results led to generation of a W277 and N313 focused pharmacophore hypothesis and the screening of the ZINC15 database using ZINCPharmer through the structure-based pharmacophore. 100 ns all-atomic molecular dynamics (MD) simulations were performed on 9 small molecules identified and Cpd 9, (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-yl) amino] phenyl} benzamide) was predicted to be a small-molecule GPR120S antagonist. The conformational results from the collective all-atomic MD analysis provided structural information for further identification and optimisation of novel druggable inhibitors of GPR120S using this rational design approach, which could have future potential for anti-cancer drug development studies.

6.
Eur J Med Chem ; 224: 113736, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384944

RESUMO

Pyrazolopyrimidinones are fused nitrogen-containing heterocyclic systems, which act as a core scaffold in many pharmaceutically relevant compounds. Pyrazolopyrimidinones have been demonstrated to be efficient in treating several diseases, including cystic fibrosis, obesity, viral infection and cancer. In this study using glioblastoma U-251MG cell line, we tested the cytotoxic effects of 15 pyrazolopyrimidinones, synthesised via a two-step process, in combination with cold atmospheric plasma (CAP). CAP is an adjustable source of reactive oxygen and nitrogen species as well as other unique chemical and physical effects which has been successfully tested as an innovative cancer therapy in clinical trials. Significantly variable cytotoxicity was observed with IC50 values ranging from around 11 µM to negligible toxicity among tested compounds. Interestingly, two pyrazolopyrimidinones were identified that act in a prodrug fashion and display around 5-15 times enhanced reactive-species dependent cytotoxicity when combined with cold atmospheric plasma. Activation was evident for direct CAP treatment on U-251MG cells loaded with the pyrazolopyrimidinone and indirect CAP treatment of the pyrazolopyrimidinone in media before adding to cells. Our results demonstrated the potential of CAP combined with pyrazolopyrimidinones as a programmable cytotoxic therapy and provide screened scaffolds that can be used for further development of pyrazolopyrimidinone prodrug derivatives.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Gases em Plasma/metabolismo , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Pirazóis/farmacologia , Piridinas/farmacologia , Relação Estrutura-Atividade
7.
Trends Cancer ; 7(10): 886-890, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426143

RESUMO

Various complex biological effects occur when ultrasonic compression waves travel through biological material. The myriad of biological outcomes instigated by ultrasound are evident when viewed through the lens of the hallmarks of cancer. Herein, we summarise the therapeutic potential of ultrasound, enhanced by microbubbles, for the treatment of cancer.


Assuntos
Microbolhas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Ondas Ultrassônicas
8.
J Mater Chem B ; 9(32): 6326-6346, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34304256

RESUMO

Reactive oxygen species (ROS) are generated in cellular metabolism and are essential for cellular signalling networks and physiological functions. However, the functions of ROS are 'double-edged swords' to living systems that have a fragile redox balance between ROS generation and elimination. A modest increase of ROS leads to enhanced cell proliferation, survival and benign immune responses, whereas ROS stress that overwhelms the cellular antioxidant capacity can damage nucleic acids, proteins and lipids, resulting in oncogenic mutations and cell death. ROS are therefore involved in many pathological conditions. On the other hand, ROS present selective toxicity and have been utilised against cancer and pathogens, thus also acting as a double-edged sword in the healthcare field. Injectable antioxidative hydrogels are gel precursors that form hydrogel constructs in situ upon delivery in vivo to maintain an antioxidative capacity. These hydrogels have been developed to counter ROS-induced pathological conditions, with significant advantages of biocompatibility, excellent moldability, and minimally invasive delivery. The intrinsic, readily controllable ROS-scavenging ability of the functionalised hydrogels overcomes many drawbacks of small molecule antioxidants. This review summarises the roles of ROS under pathological conditions and describes the state-of-the-art of injectable antioxidative hydrogels. A particular emphasis is also given to current ROS-producing therapeutic interventions, enabling potential application of injectable antioxidant hydrogels to prevent the adverse effects of many cancer and infection treatments.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio , Animais , Humanos , Injeções , Oxirredução , Transdução de Sinais
9.
Drug Discov Today ; 26(12): 2858-2870, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34271165

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour in adults. Treatments include surgical resection, radiotherapy, and chemotherapy. Despite this, the prognosis remains poor, with an impacted quality of life during treatment coupled with brain tumour recurrence; thus, new treatments are desperately needed. In this review, we focus on recent advances in G-protein-coupled receptor (GPCR) targets. To date, the most promising targets are the chemokine, cannabinoid, and dopamine receptors, but future work should further examine the melanocortin receptor-4 (MC4R), adhesion, lysophosphatidic acid (LPA) and smoothened (Smo) receptors to initiate new drug-screening strategies and targeted delivery of safe and effective GBM therapies.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Desenvolvimento de Medicamentos , Glioblastoma/patologia , Humanos , Terapia de Alvo Molecular , Recidiva Local de Neoplasia , Prognóstico , Qualidade de Vida
10.
Nanomedicine ; 36: 102436, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34153528

RESUMO

Platinum nanoparticles (PtNPs) have been investigated for their antioxidant abilities in a range of biological and other applications. The ability to reduce off-target cold atmospheric plasma (CAP) cytotoxicity would be useful in Plasma Medicine; however, little has been published to date about the ability of PtNPs to reduce or inhibit the effects of CAP. Here we investigate whether PtNPs can protect against CAP-induced cytotoxicity in cancerous and non-cancerous cell lines. PtNPs were shown to dramatically reduce intracellular reactive species (RONS) production in U-251 MG cells. However, RONS generation was unaffected by PtNPs in medium without cells. PtNPs protect against CAP induced mitochondrial membrane depolarization, but not cell membrane permeabilization which is a CAP-induced RONS-independent event. PtNPs act as potent intracellular scavengers of reactive species and can protect against CAP induced cytotoxicity. PtNPs, showing no significant biocorrosion, may be useful as a catalytic antioxidant for healthy tissue and for protecting against CAP-induced tissue damage.


Assuntos
Citotoxinas/efeitos adversos , Nanopartículas Metálicas , Estresse Oxidativo/efeitos dos fármacos , Gases em Plasma/efeitos adversos , Platina , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Células HEK293 , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Gases em Plasma/farmacologia , Platina/química , Platina/farmacologia
11.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530486

RESUMO

Ursolic acid (UA) is a bioactive compound which has demonstrated therapeutic efficacy in a variety of cancer cell lines. UA activates various signalling pathways in Glioblastoma multiforme (GBM) and offers a promising starting point in drug discovery; however, understanding the relationship between cell death and migration has yet to be elucidated. UA induces a dose dependent cytotoxic response demonstrated by flow cytometry and biochemical cytotoxicity assays. Inhibitor and fluorescent probe studies demonstrate that UA induces a caspase independent, JNK dependent, mechanism of cell death. Migration studies established that UA inhibits GBM collective cell migration in a time dependent manner that is independent of the JNK signalling pathway. Cytotoxicity induced by UA results in the formation of acidic vesicle organelles (AVOs), speculating the activation of autophagy. However, inhibitor and spectrophotometric analysis demonstrated that autophagy was not responsible for the formation of the AVOs. Confocal microscopy and isosurface visualisation determined co-localisation of lysosomes with the previously identified AVOs, thus providing evidence that lysosomes are likely to be playing a role in UA induced cell death. Collectively, our data identify that UA rapidly induces a lysosomal associated mechanism of cell death in addition to UA acting as an inhibitor of GBM collective cell migration.

12.
Sci Rep ; 11(1): 2346, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504900

RESUMO

Biofilms are complex microbial communities that present serious contamination risks to our environment and health. In this study, atmospheric air plasma and airborne acoustic ultrasound technology were applied to inactivate Escherichia coli and Listeria innocua biofilms. Both technologies were efficient in controlling, or completely inactivating, the target bacterial biofilms. Viability and metabolic assays, along with microscopy analysis, revealed that atmospheric air plasma and airborne acoustic ultrasound damaged both the bacterial biofilm cells and its structural integrity. Scanning electron microscopy images highlighted the disruption of the biofilms and pore formation in bacterial cells exposed to both the plasma and acoustic treatments. Elevated reactive oxygen and nitrogen species in bacterial cells treated with atmospheric air plasma, demonstrated their primary role in the observed bacterial inactivation process. Our findings provide potential antimicrobial strategies to combat bacterial biofilms in the food and healthcare sectors.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Listeria/fisiologia , Viabilidade Microbiana , Microscopia Eletrônica de Varredura
13.
Bioorg Med Chem Lett ; 31: 127672, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161126

RESUMO

The G-protein coupled receptor - GPR120 has recently been implicated as a novel target for colorectal cancer (CRC) and other cancer managements. In this study, a homology model of GPR120S (short isoform) was generated to identify potential anti-cancer compounds targeting the GPR120 receptor using a combined in silico docking-based virtual screening (DBVS), structure-activity relationships (SAR) and in vitro screening approach. SPECS database of synthetic chemical compounds (~350,000) was screened using the developed GPR120S model to identify molecules binding to the orthosteric binding pocket followed by an AutoDock SMINA rigid-flexible docking protocol. The best 13 hit molecules were then tested in vitro to evaluate their cytotoxic activity against SW480 - human CRC cell line expressing GPR120. The test compound 1 (3-​(4-​methylphenyl)​-​2-​[(2-​oxo-​2-​phenylethyl)​sulfanyl]​-​5,6-​dihydrospiro(benzo[h]​quinazoline-​5,1'-​cyclopentane)​-​4(3H)​-​one) showed ~ 90% inhibitory effects on cell growth with micromolar affinities (IC50 = 23.21-26.69 µM). Finally, SAR analysis of compound 1 led to the identification of a more active compound from the SPECS database showing better efficacy during cell-based cytotoxicity assay -5 (IC50 = 5.89-6.715 µM), while a significant reduction in cytotoxic effects of 5 was observed in GPR120-siRNA pre-treated SW480 cells. The GPR120S homology model generated, and SAR analysis conducted by this work discovered a potential chemical scaffold, dihydrospiro(benzo[h]quinazoline-5,1'-cyclopentane)-4(3H)-one, which will aid future research on anti-cancer drug development for CRC management.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Arch Biochem Biophys ; 689: 108462, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32590068

RESUMO

Silver nanoparticles (AgNP) emerged as a promising reagent for cancer therapy with oxidative stress implicated in the toxicity. Meanwhile, studies reported cold atmospheric plasma (CAP) generation of reactive oxygen and nitrogen species has selectivity towards cancer cells. Gold nanoparticles display synergistic cytotoxicity when combined with CAP against cancer cells but there is a paucity of information using AgNP, prompting to investigate the combined effects of CAP using dielectric barrier discharge system (voltage of 75 kV, current is 62.5 mA, duty cycle of 7.5kVA and input frequency of 50-60Hz) and 10 nm PVA-coated AgNP using U373MG Glioblastoma Multiforme cells. Cytotoxicity in U373MG cells was >100-fold greater when treated with both CAP and PVA-AgNP compared with either therapy alone (IC50 of 4.30 µg/mL with PVA-AgNP alone compared with 0.07 µg/mL after 25s CAP and 0.01 µg/mL 40s CAP). Combined cytotoxicity was ROS-dependent and was prevented using N-Acetyl Cysteine. A novel darkfield spectral imaging method investigated and quantified AgNP uptake in cells determining significantly enhanced uptake, aggregation and subcellular accumulation following CAP treatment, which was confirmed and quantified using atomic absorption spectroscopy. The results indicate that CAP decreases nanoparticle size, decreases surface charge distribution of AgNP and induces uptake, aggregation and enhanced cytotoxicity in vitro.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Gases em Plasma/farmacologia , Prata/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Nanopartículas Metálicas/análise , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Prata/farmacocinética
15.
Sci Rep ; 10(1): 6985, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332819

RESUMO

Cold atmospheric plasma (CAP) enhances uptake and accumulation of nanoparticles and promotes synergistic cytotoxicity against cancer cells. However, the mechanisms are not well understood. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP. Numerical modelling of the uptake of gold nanoparticle into U373MG Glioblastoma multiforme (GBM) cells predicts that CAP may introduce a new uptake route. We demonstrate that cell membrane repair pathways play the main role in this stimulated new uptake route, following non-toxic doses of dielectric barrier discharge CAP. CAP treatment induces cellular membrane damage, mainly via lipid peroxidation as a result of reactive oxygen species (ROS) generation. Membranes rich in peroxidised lipids are then trafficked into cells via membrane repairing endocytosis. We confirm that the enhanced uptake of nanomaterials is clathrin-dependent using chemical inhibitors and silencing of gene expression. Therefore, CAP-stimulated membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles into U373MG cells after CAP treatment. We demonstrate the utility of CAP to model membrane oxidative damage in cells and characterise a previously unreported mechanism of membrane repair to trigger nanomaterial uptake. This knowledge will underpin the development of new delivery strategies for theranostic nanoparticles into cancer cells.


Assuntos
Clatrina/metabolismo , Glioblastoma/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas , Nanotecnologia/métodos , Endocitose/fisiologia , Humanos , Gases em Plasma , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842251

RESUMO

Lateral flow immunochromatographic assays are a powerful diagnostic tool for point-of-care tests, based on their simplicity, specificity, and sensitivity. In this study, a rapid and sensitive gold nanoparticle (AuNP) immunochromatographic strip is produced for detecting aflatoxin B1 (AFB1) in suspicious fungi-contaminated food samples. The 10 nm AuNPs were encompassed by bovine serum albumin (BSA) and AFB1 antibody. Thin-layer chromatography, gel electrophoresis and nuclear magnetic resonance spectroscopy were employed for analysing the chemical complexes. Various concentrations of AFB1 antigen (0-16 ng/mL) were tested with AFB1 antibody-BSA-AuNPs (conjugated AuNPs) and then analysed by scanning electron microscopy, ultraviolet-visible spectroscopy, and Zetasizer. The results showed that the AFB1 antibody was coupled to BSA by the N-hydroxysuccinimide ester method. The AuNPs application has the potential to contribute to AFB1 detection by monitoring a visible colour change from red to purple-blue, with a detection limit of 2 ng/mL in a 96-well plate. The lateral flow immunochromatographic strip tests are rapid, taking less than 10 min., and they have a detection capacity of 10 ng/g. The smartphone analysis of strips provided the results in 3 s, with a detection limit of 0.3 ng/g for AFB1 when the concentration was below 10 ng/g. Excellent agreement was found with AFB1 determination by high-performance liquid chromatography in the determination of AFB1 among 20 samples of peanuts, corn, rice, and bread.


Assuntos
Aflatoxina B1 , Antifúngicos/farmacologia , Ouro , Nanopartículas Metálicas , Fitas Reagentes , Aflatoxina B1/química , Antifúngicos/química , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Ouro/química , Nanopartículas Metálicas/química , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Albumina Sérica/química
17.
Sci Rep ; 9(1): 12891, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501494

RESUMO

Room temperature Cold Atmospheric Plasma (CAP) has shown promising efficacy for the treatment of cancer but the exact mechanisms of action remain unclear. Both apoptosis and necrosis have been implicated as the mode of cell death in various cancer cells. We have previously demonstrated a caspase-independent mechanism of cell death in p53-mutated glioblastoma multiforme (GBM) cells exposed to plasma. The purpose of this study was to elucidate the molecular mechanisms involved in caspase-independent cell death induced by plasma treatment. We demonstrate that plasma induces rapid cell death in GBM cells, independent of caspases. Accumulation of vesicles was observed in plasma treated cells that stained positive with acridine orange. Western immunoblotting confirmed that autophagy is not activated following plasma treatment. Acridine orange intensity correlates closely with the lysosomal marker Lyso TrackerTM Deep Red. Further investigation using isosurface visualisation of confocal imaging confirmed that lysosomal accumulation occurs in plasma treated cells. The accumulation of lysosomes was associated with concomitant cell death following plasma treatment. In conclusion, we observed rapid accumulation of acidic vesicles and cell death following CAP treatment in GBM cells. We found no evidence that either apoptosis or autophagy, however, determined that a rapid accumulation of late stage endosomes/lysosomes precedes membrane permeabilisation, mitochondrial membrane depolarisation and caspase independent cell death.


Assuntos
Glioblastoma/patologia , Lisossomos/metabolismo , Gases em Plasma/farmacologia , Autofagia/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Sci Rep ; 9(1): 7421, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092878

RESUMO

We hereby report a novel synthesis method of size and shape controllable gold nanoparticles that is rapid, in situ and seedless. Unlike most currently employed size and shape controllable synthesis methods, it takes place in a single step under room temperature within ~15 minutes. While mixtures of gold nanospheres around 70 nm and gold nanoplates with width ranging from 100 nm to 1000 nm can be synthesized in about 15 minutes by standard synthesis method using N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES) to reduce Au(III), gold nanoflowers or mixtures of smaller gold nanospheres and nanoplates can be synthesized with the addition of disodium phosphate (Na2HPO4) or monosodium phosphate (NaH2PO4), respectively. Increasing the concentration of phosphate added significantly reduces the formation time of gold nanoparticles to seconds. By increasing the molar ratio of Na2HPO4: HEPES and NaH2PO4: HEPES, the size of gold nanoflowers and gold nanoparticle mixtures can be tuned from ~60 nm down to 1 nm and from ~70 nm to ~2.5 nm, respectively. The systematic structural changes are accompanied by similarly systematic colour changes associated with shifting of the surface plasmon resonance. The proposed mechanism of the synthesis process is also presented.

19.
Artigo em Inglês | MEDLINE | ID: mdl-29772665

RESUMO

Gold nanoparticles (GNPs) are increasingly being used in a wide range of applications, and such they are being released in greater quantities into the environment. Consequently, the environmental effects of GNPs, especially toxicities to living organisms, have drawn great attention. However, their toxicological characteristics still remain unclear. Fungi, as the decomposers of the ecosystem, interact directly with the environment and critically control the overall health of the biosphere. Thus, their sensitivity to GNP toxicity is particularly important. The aim of this study was to evaluate the role of GNP shape and size in their toxicities to fungi, which could help reveal the ecotoxicity of GNPs. Aspergillus niger, Mucor hiemalis, and Penicillium chrysogenum were chosen for toxicity assessment, and spherical and star/flower-shaped GNPs ranging in size from 0.7 nm to large aggregates of 400 nm were synthesised. After exposure to GNPs and their corresponding reaction agents and incubation for 48 h, the survival rates of each kind of fungus were calculated and compared. The results indicated that fungal species was the major determinant of the variation of survival rates, whereby A. niger was the most sensitive and M. himalis was the least sensitive to GNP exposure. Additionally, larger and non-spherical GNPs had relatively stronger toxicities.


Assuntos
Aspergillus niger/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Mucor/efeitos dos fármacos , Tamanho da Partícula , Penicillium chrysogenum/efeitos dos fármacos , Testes de Toxicidade
20.
Sci Rep ; 8(1): 5298, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593309

RESUMO

Gold nanoparticles (AuNP) have potential as both diagnostic and therapeutic vehicles. However, selective targeting and uptake in cancer cells remains challenging. Cold atmospheric plasma (CAP) can be combined with AuNP to achieve synergistic anti-cancer cytotoxicity. To explore synergistic mechanisms, we demonstrate both rate of AuNP uptake and total amount accumulated in U373MG Glioblastoma multiforme (GBM) cells are significantly increased when exposed to 75 kV CAP generated by dielectric barrier discharge. No significant changes in the physical parameters of AuNP were caused by CAP but active transport mechanisms were stimulated in cells. Unlike many other biological effects of CAP, long-lived reactive species were not involved, and plasma-activated liquids did not replicate the effect. Chemical effects induced by direct and indirect exposure to CAP appears the dominant mediator of enhanced uptake. Transient physical alterations of membrane integrity played a minor role. 3D-reconstruction of deconvoluted confocal images confirmed AuNP accumulation in lysosomes and other acidic vesicles, which will be useful for future drug delivery and diagnostic strategies. Toxicity of AuNP significantly increased by 25-fold when combined with CAP. Our data indicate that direct exposure to CAP activates AuNP-dependent cytotoxicity by increasing AuNP endocytosis and trafficking to lysosomes in U373MG cells.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Endocitose/efeitos dos fármacos , Gases em Plasma/farmacologia , Trifosfato de Adenosina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Ouro/metabolismo , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/uso terapêutico , Coroa de Proteína/métodos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...